Selecciona los documentos para visualizarlos
Nombre del archivo | Ver recurso |
---|
Se han encontrado 28 recursos
The tropical forage grass Brachiaria humidicola (Bh) controls soil microbial nitrification via biological nitrification inhibition (BNI). The aim of our study was to verify if nitrate reductase activity (NRA) in Bh roots or leaves reflects in vivo performance of BNI in soils. NRA was measured in ...
En Latinoamérica el 46% de las emisiones de GEI proviene del cambio de usos de la tierra y el 20% de la agricultura, en donde el 58% y el 70% de las emisiones son debidas a la ganadería. El continuo crecimiento de este sector (+32% previsto al 2050) ha impulsado la expansión de la frontera agrope...
In the last decades, strategies have been evaluated to reduce rumen methane (CH4) production by supplementing tropical forages rich in secondary compounds; however, most of these beneficial effects need to be validated in terms of their persistence over time. The aim of this study was to assess C...
Aim: Utilization of biological nitrification inhibition (BNI) strategy can reduce nitrogen losses in agricultural systems. This study is aimed at characterizing BNI activity in a plant-soil system using a biparental hybrid population of Brachiaria humidicola (Bh), a forage grass with high BNI pot...
Background and Aims: The forage grass Brachiaria humidicola (Bh) has been shown to reduce soil microbial nitrification. However, it is not known if biological nitrification inhibition (BNI) also has an effect on nitrogen (N) cycling during cultivation of subsequent crops. Therefore, the objective...
High nitrogen (N) concentration in bovine urine, which generally exceeds plant N uptake rates, results in the formation of hotspots of N loss when bovine urine is deposited on grazed pasture soils. High spatial variability in the distribution of urine patches in grazed pastures poses a major chal...
Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N2O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity through...
The tropical forage grass Brachiaria humidicola (Bh) suppresses the activity of soil nitrifiers through biological nitrification inhibition (BNI). As a result, nitrate (NO−3) formation and leaching are reduced which is also expected to tighten the soil nitrogen (N) cycle. However, the beneficial ...
Selecciona los documentos para visualizarlos
Nombre del archivo | Ver recurso |
---|