Drought stress is one of the major abiotic factors limiting banana (Musa) production. Even mild-drought conditions are responsible for considerable yield losses. We performed large-scale transcriptome sequencing using Illumina technology on root tissue of three triploid genotypes representing wel...
Zorrilla-Fontanesi, Y.
,
Rouard, M.
,
Cenci, A.
,
Kissel, E.
,
Do, H.
,
Dubois, E.
,
Nidelet, S.
,
Roux, N.
,
Swennen, R.L.
,
Carpentier, S.C.
,
[Transcriptomic profiling in Musa: a look into processes affected by mild osmotic stress in the root tip]
,
Transcriptomic profiling in Musa: a look into processes affected by mild osmotic stress in the root tip
With a diverse host range, Meloidogyne incognita (root-knot nematode) is listed as one of the most economically important obligate parasites of agriculture. This nematode species establishes permanent feeding sites in plant root systems soon after infestation. A compatible host-nematode interacti...
Al-Idrus, A.
,
Carpentier, S.C.
,
Ahmad, M.T.
,
Panis, B.
,
Mohamed, Z.
,
[Elucidation of the compatible interaction between banana and Meloidogyne incognita via high-throughput proteome profiling]
,
Elucidation of the compatible interaction between banana and Meloidogyne incognita via high-throughput proteome profiling
Drought is a complex phenomenon that is relevant for many crops. Performing high-throughput transcriptomics in non-model crops is challenging. The non-model crop where our workflow has been tested on is banana (Musa spp.), which ranks among the top ten staple foods (total production over 145 mill...
Zorrilla-Fontanesi, Y.
,
Rouard, M.
,
Cenci, A.
,
Kissel, E.
,
Roux, N.
,
Swennen, R.L.
,
Carpentier, S.C.
,
[How do roots respond to osmotic stress? A transcriptomic approach to address this question in a non-model crop]
,
How do roots respond to osmotic stress? A transcriptomic approach to address this question in a non-model crop