Descubre y comparte nuestro conocimiento público

Se han encontrado 9 recursos

Resultados de búsqueda

We have previously reported the results of genome-wide searches in two murine F2 populations for QTLs that influence survival following Trypanosoma congolense infection. Three loci, Tir1, Tir2, and Tir3, were identified and mapped to mouse Chromosomes (Chrs) 17, 5, and 1 respectively, with confid...


Iraqi, F.A.Clapcott, S.J.Kumari, P.Haley, C.S.Kemp, Stephen J.Teale, A.J.[Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines]Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines

The heat shock protein (HSP) 70.1 gene lies on mouse chromosome 17 among the candidates for Tir1, the major quantitative trait locus associated with response to Trypanosoma congolense infection. To evaluate whether the HSP70.1 gene is involved in the response, we compared the susceptibility of HS...


Nakamura, Y.Naessens, JanTakata, M.Taniguchi, T.Sekikawa, K.Gibson, John P.Iraqi, F.A.[Susceptibility of heat shock protein 70.1-deficient C57BL/6 J, wild-type C57BL/6 J and A/J mice to Trypanosoma congolense infection]Susceptibility of heat shock protein 70.1-deficient C57BL/6 J, wild-type C57BL/6 J and A/J mice to Trypanosoma congolense infection

Tumor necrosis factor-α (TNF-α) plays a role in the host’s defence against infections with African trypanosomes. It helps to control the blood stream form of the parasite and in Trypanosoma congolense infections, it also prolongs survival. The mechanisms by which this cytokine can influence paras...


Kitani, H.Yagi, Y.Naessens, JanSekikawa, K.Iraqi, F.A.[The secretion of acute phase proteins and inflammatory cytokines during Trypanosoma congolense infection is not affected by the absence of the TNF-α gene]The secretion of acute phase proteins and inflammatory cytokines during Trypanosoma congolense infection is not affected by the absence of the TNF-α gene

Fine mapping of quantitative trait loci (QTL) associated with resistance to the gastrointestinal parasite Heligmosomoides polygyrus was achieved on F6/F7 offspring (1076 mice) from resistant (SWR) and susceptible (CBA) mouse strains by selective genotyping (top and bottom 20% selected on total wo...


Behnke, J.M.Iraqi, F.A.Mugambi, J.M.M.Clifford, S.Nagda, S.M.Wakelin, D.Kemp, Stephen J.Leyden, B.Gibson, John P.[High resolution mapping of chromosomal regions controlling resistance to gastrointestinal nematode infections in an advanced intercross line of mice]High resolution mapping of chromosomal regions controlling resistance to gastrointestinal nematode infections in an advanced intercross line of mice

The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background a...


Churchill, G.A.Airey, D.C.Allayee, H.Angel, J.M.Attie, A.D.Beatty, J.Beavis, W.D.Belknap, J.K.Bennett, B.Berrettini, W.Bleich, A.Bogue, M.Broman, K.W.Buck, K.J.Buckler, E.Burmeister, M.Chesler, E.J.Cheverud, J.M.Clapcote, S.Cook, M.N.Cox, R.D.Crabbe, J.C.Crusio, W.E.Darvasi, A.Deschepper, C.F.Doerge, R.W.Farber, C.R.Forejt, J.Gaile, D.Garlow, S.J.Geiger, H.Gershenfeld, H.Gordon, T.Gu, J.Gu, W.Haan, G. deHayes, N.L.Heller, C.Himmelbauer, H.Hitzemann, R.Hunter, K.Hsu, H.-C.Iraqi, F.A.Ivandic, B.Jacob, H.J.Jansen, R.C.Jepsen, K.J.Johnson, D.K.Johnson, T.E.Kempermann, G.Kendziorski, C.Kotb, M.Kooy, R.F.Llamas, B.Lammert, F.Lassalle, J.M.Lowenstein, P.R.Lu, L.Lusis, A.Manly, K.F.Marcucio, R.Matthews, D.Medrano, J.F.Miller, D.R.Mittleman, G.Mock, B.A.Mogil, J.S.Montagutelli, X.Morahan, G.Morris, D.G.Mott, R.Nadeau, J.H.Nagase, H.Nowakowski, R.S.O'Hara B.F.Osadchuk, A.V.Page, G.P.Paigen, B.Paigen, K.Palmer, A.A.Pan, H.J.Peltonen-Palotie, L.Peirce, J.Pomp, D.Pravenec, M.Prows, D.R.Qi, Z.Reeves, R.H.Roder, J.Rosen, G.D.Schadt, E.E.Schalkwyk, L.C.Seltzer, Z.Shimomura, K.Shou, S.Sillanpaa, M.J.Siracusa, L.D.Snoeck, H.W.Spearow, J.L.Svenson, K.Tarantino, L.M.Threadgill, D.Toth, L.A.Valdar, W.Pardo-Manuel de Villena, F.Warden, C.Whatley, S.Williams, R.W.Wiltshire, T.Yi, N.Zhang, D.Zhang, M.Zou, F.[The Collaborative Cross, a community resource for the genetic analysis of complex traits]The Collaborative Cross, a community resource for the genetic analysis of complex traits
Lou, Y.Zhang, S.Amstein, T.Anyango, M.Mohibullah, N.Osoti, A.King, R.Iraqi, F.A.Gershenfeld, H.[The genetic architecture of exploratory and fear-like behavior in mice: A comparison of two complementary strategies for fine mapping QTLs. Abstract]The genetic architecture of exploratory and fear-like behavior in mice: A comparison of two complementary strategies for fine mapping QTLs. Abstract
Lou, Y.Zhang, S.Amstein, T.Anyango, M.Mohibullah, N.Osoti, A.King, R.Iraqi, F.A.Gershenfeld, H.[The genetic architecture of exploratory and fear-like behaviour in mice: A comparison of three strategies for fine mapping QTLs. Abstract]The genetic architecture of exploratory and fear-like behaviour in mice: A comparison of three strategies for fine mapping QTLs. Abstract
Gibson, John P.Iraqi, F.A.[Are existing inbred strains a powerful resource for fine mapping of QTL? Inferences from observed haplotypes among 7 inbred strains]Are existing inbred strains a powerful resource for fine mapping of QTL? Inferences from observed haplotypes among 7 inbred strains
Ng'ang'a, J.K.Gibson, John P.Kemp, Stephen J.Iraqi, F.A.[High resolution mapping of trypanotolerance QTL Tir2 and 3 using F12 advanced intercross lines. Abstract]High resolution mapping of trypanotolerance QTL Tir2 and 3 using F12 advanced intercross lines. Abstract

Selecciona los documentos para visualizarlos

Nombre del archivo Ver recurso