Descubre y comparte nuestro conocimiento público

Se han encontrado 9 recursos

Resultados de búsqueda

Nitrogen (N), the most critical and essential nutrient for plant growth, largely determines the productivity in both extensive and intensive grassland systems. Nitrification and denitrification processes in the soil are the primary drivers of generating reactive N (NO3-, N2O and NO), largely resp...


Subbaraoa, Guntur V.Rao, Idupulapati M.Nakahara, K.Ando, YasuoSahrawat, Kanwar LalTesfamariam, T.Lata, Jean-ChristopheBoudsocq, S.Miles, John W.Ishitani, ManabuPeters, Michael[Nitrogen management in grasslands and forage-based production systems—Role of biological nitrification inhibition (BNI)]Nitrogen management in grasslands and forage-based production systems—Role of biological nitrification inhibition (BNI)

Background: Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environm...


Subbaraoa, Guntur V.Sahrawat, Kanwar LalNakahara, K.Rao, Idupulapati M.Ishitani, ManabuHash, C.T.Kishi, M.Bonnett, D.Berry, W.Lata, Jean-Christophe[A paradigm shift towards low-nitrifying systems: The role of biological nitrification inhibition (BNI)]A paradigm shift towards low-nitrifying systems: The role of biological nitrification inhibition (BNI)

Human activity has had the single largest influence on the global nitrogen (N) cycle by introducing unprecedented amounts of reactive-N into ecosystems. A major portion of this reactive-N, applied as fertilizer to crops, leaks into the environment with cascading negative effects on ecosystem func...


Subbaraoa, Guntur V.Sahrawat, Kanwar LalNakahara, K.Ishikawa, T.Kudo, N.Kishii, M.Rao, Idupulapati M.Hash, C.T.George, T.S.Rao, P.S.Nardi, P.Bonnett, D.Berry, W.Suenaga, K.Lata, Jean-Christophe[Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems]Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems

Agriculture and livestock production systems are two major emitters of greenhouse gases. Methane with a GWP (global warming potential) of 21, and nitrous oxide (N2O) with a GWP of 300, are largely emitted from animal production agriculture, where livestock production is based on pasture and feed ...


Subbaraoa, Guntur V.Rao, Idupulapati M.Nakahara, K.Sahrawat, Kanwar LalHash, C.T.Ando, YasuoKawashima, T.[Potential for biological nitrification inhibition (BNI) to reduce nitrification and N2O emissions from pasture-crop-livestock systems]Potential for biological nitrification inhibition (BNI) to reduce nitrification and N2O emissions from pasture-crop-livestock systems

Nitrogen (N), being the most critical and essential nutrient for plant growth, largely determines the productivity in both extensive- and intensive- grassland systems. Nitrification and denitrification processes in the soil are the primary drivers generating reactive-N: NO3-, N2O, and NO, and is ...


Subbaraoa, Guntur V.Rao, Idupulapati M.Nakahara, K.Ando, YasuoSahrawat, Kanwar LalTsefamarium TLata, Jean-ChristopheBoudsocq, S.Miles, John W.Ishitani, ManabuPeters, Michael[Nitrogen management in grasslands and forage-based production systems – Role of biological nitrification inhibition (BNI)]Nitrogen management in grasslands and forage-based production systems – Role of biological nitrification inhibition (BNI)

Nitrification, a key process in the global nitrogen cycle that generates nitrate through microbial activity, may enhance losses of fertilizer nitrogen by leaching and denitrification. Certain plants can suppress soil-nitrification by releasing inhibitors from roots, a phenomenon termed biological...


Subbaraoa, Guntur V.Nakahara, K.Hurtado, MPOno, HMoreta Mejia, DESalcedo, AFYoshihashi, ATIshikawa, T.Ishitani, ManabuOhnishi, MYoshida, MRondón, Marco AntonioRao, Idupulapati M.Lascano, Carlos E.Berry, W.L.Ito, O.[Evidence for biological nitrification inhibition in Brachiaria pastures]Evidence for biological nitrification inhibition in Brachiaria pastures
Subbaraoa, Guntur V.Ishikawa, T.Nakahara, K.Ishitani, ManabuRao, Idupulapati M.[BNI (Biological Nitrification Inhibition) funtion in tropical Brachiaria pastures]BNI (Biological Nitrification Inhibition) funtion in tropical Brachiaria pastures

Regulating nitrification could be a key strategy in improving nitrogen (N) recovery and agronomic N-use efficiency in situations where the loss of N following nitrification is significant. A highly sensitive bioassay using recombinant luminescent Nitrosomonas europaea, has been developed that can...


Subbaraoa, Guntur V.Rondón, Marco AntonioIto, O.Ishikawa, T.Rao, Idupulapati M.Nakahara, K.Lascano, Carlos E.Berry, W.L.[Biological nitrification inhibition (BNI): is it a widespread phenomenon?]Biological nitrification inhibition (BNI): is it a widespread phenomenon?
Subbaraoa, Guntur V.Sahrawat, Kanwar LalNakahara, K.Rao, Idupulapati M.Ishitani, ManabuHash, C.T.Kishii, M.Bonnett, DGBerry, W.L.Lata, Jean-Christophe[A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)]A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

Selecciona los documentos para visualizarlos

Nombre del archivo Ver recurso