Selecciona los documentos para visualizarlos
Nombre del archivo | Ver recurso |
---|
Se han encontrado 14 recursos
Nitrogen (N), being the most critical and essential nutrient for plant growth, largely determines the productivity in both extensive- and intensive- grassland systems. Nitrification and denitrification processes in the soil are the primary drivers generating reactive-N: NO3-, N2O, and NO, and is ...
Nitrification, a key process in the global nitrogen cycle that generates nitrate through microbial activity, may enhance losses of fertilizer nitrogen by leaching and denitrification. Certain plants can suppress soil-nitrification by releasing inhibitors from roots, a phenomenon termed biological...
High nitrogen (N) concentration in bovine urine, which generally exceeds plant N uptake rates, results in the formation of hotspots of N loss when bovine urine is deposited on grazed pasture soils. High spatial variability in the distribution of urine patches in grazed pastures poses a major chal...
Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N2O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity through...
Brachiaria species have the ability to suppress nitrification in soil by releasing an inhibitory compound called ‘brachialactone’ from its roots; a process termed biological nitrification inhibition (BNI). This study tested the hypothesis that endophytic association with Brachiaria grass improves...
Selecciona los documentos para visualizarlos
Nombre del archivo | Ver recurso |
---|